Interconnect Aware Design

Interconnect Modeling Regimes

- **Boards**
 - L >> λ
 - Classic Mixed Signal IC
 - Well Defined Ground
 - S parameters
 - Frequency Domain

- **Packages**
 - L ≈ λ
 - MMIC’s
 - RFIC-Si
 - Inductance
 - Poorly Defined Ground
 - Frequency and Time

- **Digital IC**
 - L << λ
 - Classic Microwave
 - Time Domain

- **RFIC-SOI**
 - Few Nets
 - Complexity of Interconnect

- **RFIC**
 - Large Number Nets

AWR
"Classic" Microwave Interconnect Flow

- Interconnect “drawn” in schematic
 - Use transmission line and discontinuity models.
 - Distributed models with phase change, dispersion,...
 - Ground plane centric models.
 - Can be awkward to draw.
 - Worried about coupling between lines.
- Rest of layout drawn as polygons.
- Post layout checking with EM tools and DRC checkers.
 - General EM simulation can be time consuming

“Classic” Board and Package Interconnect Flow

- Transmission lines in schematic to give delay, impedance.
 - No effort at layout - other than getting overall length.
 - Maybe some coupled line and discontinuity models

- Layout person completes layout including high speed nets.
- Final checking with EM simulation of some kind.
Interconnect Aware Design

“Classic” Analog Interconnect Design Flow

- Interconnect is a parasitic - its effects are included later in the design.
- Schematic does not show interconnect.
- Layout - interconnect is drawn as polygons.
- Through electrical “extraction” a model is created.
- The circuit is resimulated with parasitics.
- The rest of the layout is drawn.
- The circuit is checked for DRC and LVS.

Critical Interconnect Extraction Concept

- Critical analog nets are extracted quickly and accurately.
- Extracted model is placed back in simulation automatically.
- After critical nets are determined - rest of circuit is drawn and traditional DRC / LVS simulations carried out.
Models for Extraction

- **L >> \lambda**: Few Nets
 - Transmission Lines with well defined grounds
 - Phase delay
 - Loss
 - Dispersion

- **L << \lambda**: Large Number Nets
 - Lumped RLCK models
 - DC Loss (Some HF)
 - Series/Mutual Inductance
 - Mutual Capacitance

- **ACE**: Microwave
 - Inductance
 - Poorly Defined Ground
 - Frequency and Time

- **RFIC**: Transmission Lines with well defined grounds
 - Phase delay
 - Loss
 - Dispersion

- **Classic Mixed Signal IC**: Lumped RLCK models
 - DC Loss (Some HF)
 - Series/Mutual Inductance
 - Mutual Capacitance