AC Voltage Characterization

\[v(t) \]

\[\text{Period } T = \frac{1}{f} \]

- **Peak voltage** \(V_p \): \[V_p = \max_t \left| v(t) \right| \]
- **Peak-to-peak voltage** \(V_{pp} \): \[V_{pp} = \max_t v(t) - \min_t v(t) \]
- **Average voltage** \(V_{avg} \): \[V_{avg} = \frac{1}{T} \int_0^T v(t) \, dt \]
- **Root-mean-square voltage** \(V_{rms} \): \[V_{rms} = \sqrt{\frac{1}{T} \int_0^T \left| v(t) \right|^2 \, dt} \]

For \(v(t) = A \sin 2\pi ft \) \[V_{rms} = \frac{A}{\sqrt{2}} = 0.707 A \]

Transformer voltages are usually given in \(V_{rms} \).
Half-wave Rectifier

\[v_s(t) = A \sin 2\pi f t \]

\[V_p = V_{pp} = A \]

\[V_{avg} = \frac{A}{\pi} = 0.318 A \]

\[V_{rms} = \frac{A}{\sqrt{2}} = 0.5 A \]

Note: \(V_{pp} \) is also called **ripple voltage** \(V_{ripple} \)
Reducing Ripple in $v(t)$

$V_s(t) = A \sin 2\pi ft$

 Capacitor stores energy during negative cycle of $V_s(t)$

Capacitor charges during $\frac{1}{4f}$ sec
Capacitor discharges during $\frac{3}{4f}$ sec

$V_{pp} = V_{ripple} = (1 - e^{-3/4fR_LC})A = \frac{3A}{4fR_LC}$

If $V_{pp} \ll V_p = A$

$\min_t v(t) = V_p - V_{pp} = e^{-3/4fR_LC} \cdot A = (1 - \frac{3}{4fR_LC})A$

For a linear regulator this must be larger than the desired output voltage plus the minimum voltage drop across the regulator.
Full Wave Rectifiers

\[v_s(t) = A \sin(2\pi f t) \]

\[v(t) = |A \sin(2\pi f t)| \]

\[V_p = V_{pp} = V_{ripple} = A \]

\[V_{avg} = \frac{2A}{\pi} = 0.637 A \]

\[V_{rms} = \frac{A}{\sqrt{2}} = 0.707 A \]
Reducing ripple in \(v(t) \)

Capacitor discharge during \(\approx \frac{3}{8f} \) sec

Capacitor charges during \(\approx \frac{1}{8f} \) sec

\[V_{pp} = V_{ripple} = (1 - e^{-\frac{3}{8fRCL}})A \approx \frac{3A}{8fRCL} \]

If \(V_{pp} \ll V_p = A \)

\[\min v(t) = V_p - V_{pp} = e^{-\frac{3}{8fRCL}}A = (1 - \frac{3}{8fRCL})A \]