Power Supply Block Diagram

Transformers

Rectifier

Regulator

120V ac
Transformers: Two inductors L_1, L_2 placed close to each other. Magnetic flux produced by L_1 links to L_2 and induces voltage at terminals of L_2.

$$n = \frac{N_2}{N_1}, \text{ turns ratio}$$

L_1: primary N_1 turns
L_2: secondary N_2 turns

$$v_2(t) = M N_1 N_2 \frac{di_1(t)}{dt}$$

$$M = k \sqrt{L_1 L_2}, \text{ mutual inductance}$$

k: coupling coefficient
$$0 \leq k \leq 1$$
Ideal Transformer: $k = 1$, no power loss

\[v_2(t) = n v_1(t) \quad \text{since } k = 1 \]

No power loss: \[p(t) = v_1(t) i_1(t) + v_2(t) i_2(t) = 0 \]

\[\Rightarrow v_2(t) i_2(t) = -v_1(t) i_1(t) \]

\[\Rightarrow i_2(t) = -\frac{v_1(t)}{v_2(t)} i_1(t) = -\frac{1}{n} i_1(t) \]

As voltage goes down, current goes up and vice versa.
Example: 115 Vac to 9 Vac, 1 A ac transforms

\[n = \frac{v_2(t)}{v_1(t)} = \frac{9 V}{115 V} = 0.078 \]

\[i_2(t) = 1 A = -\frac{1}{n} i_1(t) \Rightarrow i_1(t) = -n i_2(t) = -0.078 A \text{ ac} \]

Transformers uses 115 Vac, 78 mA ac on primary side to deliver 9 Vac, 1 A ac on secondary side.

Primary and secondary side are electrically isolated; energy is transferred through magnetic field.