Second Order RLC Filters

1 RLC Lowpass Filter

A passive RLC lowpass filter (LPF) circuit is shown in the following schematic.

\[
\begin{align*}
\text{RLC Lowpass Filter} \\
\begin{array}{c}
\text{Input}\ v_S(t) \\
\downarrow \\
\text{RC}\ \\
\downarrow \\
\text{Output}\ v_O(t)
\end{array}
\end{align*}
\]

Using phasor analysis, \(v_O(t) \leftrightarrow V_O \) is computed as

\[
V_O = \frac{1}{j\omega C} V_S = \frac{1}{LC} \frac{1}{(j\omega)^2 + j\omega \frac{R}{L} + \frac{1}{LC}} V_S.
\]

Setting \(\omega_0 = 1/\sqrt{LC} \) and \(2\zeta \omega_0 = R/L \), where \(\omega_0 \) is the (undamped) natural frequency and \(\zeta \) is the damping ratio, yields

\[
V_O = \frac{\omega_0^2}{(j\omega)^2 + j\omega 2\zeta \omega_0 + \omega_0^2} V_S \quad \leftrightarrow \quad v_O^{(2)}(t) + 2\zeta \omega_0 v_O^{(1)}(t) + \omega_0^2 v_O(t) = \omega_0^2 v_S(t).
\]

The blockdiagram that represents this differential equation is

Unit Step Response. By definition, the unit step response \(g(t) \) of a circuit is the zero-state response (ZSR) to the input \(v_s(t) = u(t) \). For the 2'nd order LPF considered here the unit step response is of the form (if \(\zeta \neq 1 \))

\[
g(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t} + 1, \quad t \geq 0 \quad \implies \quad g^{(1)}(t) = s_1 K_1 e^{s_1 t} + s_2 K_2 e^{s_2 t}, \quad t \geq 0,
\]
with initial conditions $g(0) = 0$ and $g^{(1)}(0) = 0$. The values of s_1 and s_2 are the solutions of the characteristic equation

$$s^2 + 2\zeta\omega_0 s + \omega_0^2 = 0 \implies s_{1,2} = (-\zeta \pm \sqrt{\zeta^2 - 1})\omega_0,$$

and the properties of $g(t)$ change fundamentally depending on whether $\zeta > 1$, $\zeta = 1$, or $\zeta < 1$.

Overdamped Case, $\zeta > 1$. In this case the characteristic equation has two real solutions

$$s_1 = -\alpha_1, \quad \alpha_1 = (\zeta - \sqrt{\zeta^2 - 1})\omega_0, \quad \text{and} \quad s_2 = -\alpha_2, \quad \alpha_2 = (\zeta + \sqrt{\zeta^2 - 1})\omega_0.$$

Note that $\alpha_1 < \alpha_2$. The unit step response is of the form

$$g(t) = K_1 e^{-\alpha_1 t} + K_2 e^{-\alpha_2 t} + 1, \quad t \geq 0 \implies g^{(1)}(t) = -\alpha_1 K_1 e^{-\alpha_1 t} - \alpha_2 K_2 e^{-\alpha_2 t}, \quad t \geq 0.$$

Using initial conditions $g(0) = 0$ and $g^{(1)}(0) = 0$ yields

$$K_1 + K_2 = -1, \quad \alpha_1 K_1 + \alpha_2 K_2 = 0. \implies \begin{bmatrix} 1 & 1 \\ \alpha_1 & \alpha_2 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

From this K_1 and K_2 are obtained as

$$K_1 = \frac{-\alpha_2}{\alpha_2 - \alpha_1}, \quad K_2 = \frac{\alpha_1}{\alpha_2 - \alpha_1},$$

and thus the unit step response for a 2'nd order overdamped LPF is

$$g(t) = 1 - \frac{\alpha_2 e^{-\alpha_1 t} - \alpha_1 e^{-\alpha_2 t}}{\alpha_2 - \alpha_1}, \quad t \geq 0.$$

Note that

$$g^{(1)}(t) = \frac{\alpha_1 \alpha_2}{\alpha_2 - \alpha_1} (e^{-\alpha_1 t} - e^{-\alpha_2 t}), \quad t \geq 0,$$

and therefore $g^{(1)}(t) = 0$ requires that $e^{-\alpha_1 t} = e^{-\alpha_2 t}$ which can only happen at $t = 0$ or $t = \infty$ if $\alpha_1 \neq \alpha_2$. This implies that the extrema of $g(t)$ occur at $t = 0$ (where $g(0) = 0$) and at $t = \infty$ (where $g(\infty) = 1$) and thus $g(t)$ has no overshoot.

Critically Damped Case, $\zeta = 1$. In this case the characteristic equation has one real double solution

$$s_1 = s_2 = -\alpha, \quad \alpha = \omega_0,$$

and the unit step response is of the form

$$g(t) = K_1 e^{-\alpha t} + K_2 t e^{-\alpha t} + 1, \quad t \geq 0,$$

$$\implies g^{(1)}(t) = -\alpha K_1 e^{-\alpha t} + K_2 e^{-\alpha t} - \alpha K_2 t e^{-\alpha t}, \quad t \geq 0.$$

Using initial conditions $g(0) = 0$ and $g^{(1)}(0) = 0$ yields

$$K_1 = -1, \quad K_2 = -\alpha,$$
and thus the unit step response for a 2’nd order critically damped LPF is

\[g(t) = 1 - (1 + \alpha t) e^{-\alpha t}, \quad t \geq 0. \]

Note that

\[g^{(1)}(t) = \alpha^2 t e^{-\alpha t}, \quad t \geq 0, \]

and therefore \(g^{(1)}(t) = 0 \) requires either \(t = 0 \) or \(t = \infty \), which implies that the extrema of \(g(t) \) are 0 (at \(t = 0 \)) and 1 (at \(t = \infty \)) and thus \(g(t) \) has no overshoot.

Underdamped Case, \(\zeta < 1 \). In this case the characteristic equation has two complex solutions which are conjugates of each other

\[s_1 = -\alpha + j\beta, \quad \text{and} \quad s_2 = s_1^* = -\alpha - j\beta, \quad \text{where} \quad \alpha = \zeta \omega_0, \quad \beta = \sqrt{1 - \zeta^2} \omega_0. \]

The unit step response is of the form

\[g(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t} + 1, \quad t \geq 0 \quad \implies \quad g^{(1)}(t) = s_1 K_1 e^{s_1 t} + s_2 K_2 e^{s_2 t}, \quad t \geq 0. \]

Substituting \(s_{1,2} = -\alpha \pm j\beta \) and using initial conditions \(g(0) = 0 \) and \(g^{(1)}(0) = 0 \) yields

\[K_1 + K_2 = -1, \quad \implies \quad \begin{bmatrix} 1 & 1 \\ -\alpha + j\beta & -\alpha - j\beta \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}. \]

From this \(K_1 \) and \(K_2 = K_1^* \) are obtained as

\[K_1 = -\frac{\beta + j\alpha}{2\beta} = \rho e^{j\phi}, \quad K_2 = -\frac{\beta - j\alpha}{2\beta} = \rho e^{-j\phi}, \]

where

\[\rho = \frac{\sqrt{\alpha^2 + \beta^2}}{2\beta} = \frac{1}{2 \sqrt{1 - \zeta^2}}, \quad \text{and} \quad \phi = \pi - \tan^{-1} \frac{\alpha}{\beta} = \pi - \tan^{-1} \frac{\zeta}{\sqrt{1 - \zeta^2}}. \]

Thus, the unit step response for a 2’nd order underdamped LPF is

\[g(t) = 1 + \rho e^{-\alpha t} \left(e^{j(\beta t + \phi)} + e^{-j(\beta t + \phi)} \right) = 1 + 2\rho e^{-\alpha t} \cos(\beta t + \phi), \quad t \geq 0, \]

or, with \(\rho \) and \(\phi \) substituted

\[g(t) = 1 - \frac{e^{-\alpha t}}{\sqrt{1 - \zeta^2}} \cos \left(\beta t - \tan^{-1} \frac{\zeta}{\sqrt{1 - \zeta^2}} \right), \quad t \geq 0. \]

To obtain a formula for \(g^{(1)}(t) \) easily, first note that \(s_2 K_2 = (s_1 K_1)^* \) and

\[s_1 K_1 = (-\alpha + j\beta) \frac{-\beta + j\alpha}{2\beta} = \frac{\alpha^2 + \beta^2}{2j\beta}. \]
Then use \(g^{(1)}(t) = (s_1 K_1 e^{j\beta t} + s_2 K_2 e^{-j\beta t}) e^{-\alpha t} \) to obtain

\[
g^{(1)}(t) = \frac{\alpha^2 + \beta^2}{\beta} e^{-\alpha t} \left(\frac{e^{j\beta t} - e^{-j\beta t}}{2j}\right) = \frac{\alpha^2 + \beta^2}{\beta} e^{-\alpha t} \sin \beta t, \quad t \geq 0.
\]

To find the times where the extrema of \(g(t) \) occur, set \(g^{(1)}(t) = 0 \) and solve for \(t \). The sine has zero crossings for \(\beta t = k\pi \) and, for \(k = 0 \), \(g(t) = g(0) = 0 \) clearly has a minimum. The largest and most interesting maximum (due to underdamping) of \(g(t) \) happens when \(bt = \pi \Rightarrow t = \pi/\beta \). The value of the maximum is computed as

\[
g_{\text{max}} = g\left(\frac{\pi}{\beta}\right) = 1 + 2\rho e^{-\pi\alpha/\beta} \cos(\pi + \phi) = 1 + \frac{e^{-\pi\zeta/\sqrt{1-\zeta^2}}}{\sqrt{1-\zeta^2}} \cos \left(\tan^{-1} \frac{\zeta}{\sqrt{1-\zeta^2}} \right).
\]

Using the identity

\[
\cos \left(\tan^{-1} \frac{x}{\sqrt{1-x^2}} \right) = \sqrt{1-x^2},
\]

the final result is

\[
g_{\text{max}} = 1 + e^{-\pi\zeta/\sqrt{1-\zeta^2}} \quad \Rightarrow \quad \text{Overshoot in \%: } 100 e^{-\pi\zeta/\sqrt{1-\zeta^2}}.
\]

The following graph shows the unit step response \(g(t) \) for several values of \(\zeta \).
Frequency Response. From the phasor analysis the system function of the LPF is obtained as

\[H = \frac{V_O}{V_S} = \frac{\omega_0^2}{\omega_0^2 - \omega^2 + j 2\zeta\omega_0 \omega} . \]

The magnitude and the phase of \(H \) are

\[|H| = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\zeta\omega_0 \omega)^2}} , \quad \text{and} \quad \angle H = -\tan^{-1} \frac{2\zeta\omega_0 \omega}{\omega_0^2 - \omega^2} . \]

Note that, at \(\omega = \omega_0 \),

\[|H|_{\omega_0} = \frac{1}{2\zeta} , \quad \text{and} \quad \angle H_{\omega_0} = -90^\circ , \]

and thus \(\zeta \) and \(\omega_0 \) can be easily determined from the magnitude and phase of \(H \).

2 RLC Bandpass Filter

A passive \(RLC \) bandpass filter (BPF) circuit is shown in the following schematic.

Using phasor analysis, \(v_O(t) \leftrightarrow V_O \) is computed as

\[V_O = \frac{j\omega L}{R + \frac{1}{j\omega RC + 1}} V_S = \frac{j\omega L}{(j\omega)^2 + j\omega RC + 1} V_S . \]

Setting \(\omega_0 = 1/\sqrt{LC} \) and \(2\zeta\omega_0 = 1/(RC) \) yields

\[V_O = \frac{j\omega 2\zeta\omega_0}{(j\omega)^2 + j\omega 2\zeta\omega_0 + \omega_0^2} V_S \quad \iff \quad v_O^{(2)}(t) + 2\zeta\omega_0 v_O^{(1)}(t) + \omega_0^2 v_O(t) = 2\zeta\omega_0 v_S^{(1)}(t) . \]

The blockdiagram that represents this differential equation is (after integrating both sides so that the input is \(v_S(t) \) rather than \(v_S^{(1)}(t) \))
Frequency Response. From the phasor analysis the system function of the BPF is obtained as

\[H = \frac{V_O}{V_S} = \frac{j 2\zeta \omega_0 \omega}{\omega_0^2 - \omega^2 + j 2\zeta \omega_0 \omega}. \]

The magnitude and the phase of \(H \) are

\[|H| = \frac{2\zeta \omega_0 \omega}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\zeta \omega_0 \omega)^2}}, \quad \text{and} \quad \angle H = \pi/2 - \tan^{-1} \frac{2\zeta \omega_0 \omega}{\omega_0^2 - \omega^2}. \]

Note that, at \(\omega = \omega_0 \) (the center frequency of the BPF),

\[|H|_{\omega_0} = 1, \quad \text{and} \quad \angle H_{\omega_0} = 0^\circ. \]

To obtain the lower half-power (or -3dB) frequency \(\omega_3^- \) of the BPF, set

\[\omega_0^2 - \omega_3^2 = 2\zeta \omega_0 \omega_3^- \quad \Rightarrow \quad \omega_3^- = (\sqrt{1 + \zeta^2} - \zeta) \omega_0. \]

Similarly, the upper half-power (or -3dB) frequency \(\omega_3^+ \) of the BPF is obtained from

\[\omega_3^2 + \omega_0^2 = 2\zeta \omega_0 \omega_3^+ \quad \Rightarrow \quad \omega_3^+ = (\sqrt{1 + \zeta^2} + \zeta) \omega_0. \]

Thus, the half-power (or -3dB) bandwidth of the BPF is equal to \(2\zeta \omega_0 \), and \(\zeta \) and \(\omega_0 \) can therefore be determined from the magnitude and phase of \(H \).